
Microservices and DevOps

Scalable Microservices
MicroService exercises

Henrik Bærbak Christensen



Exercise 1

• Using the Fowler/Newman definitions of 

microservices, analyze SkyCave’s

architecture and…

• Argue that SkyCave is a MS architecture

– Based upon the aspects it has, that are MS 

style

• Argue that SkyCave is not a MS 

architecture

– Based upon the aspects, that collide with 

the MS style

CS@AU Henrik Bærbak Christensen 2



Exercise 1

• Pro? Con?

CS@AU Henrik Bærbak Christensen 3



Exercise 2

• Start on the First Mandatory Exercise’ Strangling aspect

CS@AU Henrik Bærbak Christensen 4

Who are the groups?



Exercise 2

• As argued, you can start strangling right away!

• Example:

– My group must develop ‘CaveService’

• Obvious “small step” is to strangle all Player calls to CaveStorage

that do “cave service responsibilities’ into calling a FakeCaveService

– I.e.

• storage.getRoom(p)

• →

• caveService.issueGETrequest(p)

CS@AU Henrik Bærbak Christensen 5



Exercise 2

• I advice to

– Branch your repo to a ‘strangling branch’

• Support ‘do over’ – all is shit code!!!

– Maintain old PlayerServant in parallel; by…

– … using the factory system to create the new implementation:

CS@AU Henrik Bærbak Christensen 6



Exercise 2

• Have a look at my guide, if it seems a bit scary…

• However, just ‘hardwire the FakeCaveService()’ instead 

of using the CFP system, it is a smaller step…

– Fake it till you make it…

CS@AU Henrik Bærbak Christensen 7



Exercise 2

• Fake it till you make it…

CS@AU Henrik Bærbak Christensen 8

this.caveService = new FakeCaveService();



Exercise 3

• Create one or more QAS for SkyCave that express 

reasonable architectural requirements for

– Availability QA

– Modifiability QA

– Performance QA

– Testability QA

• Next, evaluate if SkyCave meets these requirements

CS@AU Henrik Bærbak Christensen 9


